Единый государственный экзамен по МАТЕМАТИКЕ

Демонстрационный вариант контрольных измерительных материалов для проведения в 2018 году единого государственного экзамена по МАТЕМАТИКЕ

Пояснения к демонстрационному варианту контрольных измерительных материалов для ЕГЭ по математике 2018 года

Демонстрационный вариант предназначен для того, чтобы дать представление о структуре будущих контрольных измерительных материалов, количестве заданий, их форме и уровне сложности.

Задания демонстрационного варианта не отражают всех вопросов содержания, которые могут быть включены в контрольные измерительные материалы в 2018 году. Структура работы приведена в спецификации, а полный перечень вопросов — в кодификаторах элементов содержания и требований к уровню подготовки выпускников образовательных организаций для проведения единого государственного экзамена 2018 г. по математике.

Экзаменационная работа состоит из двух частей, которые различаются по содержанию, сложности и числу заданий. Определяющим признаком каждой части работы является форма заданий:

- часть 1 содержит 11 заданий (задания 1–11) с кратким ответом;
- часть 2 содержит 4 задания (задания 12–15) с кратким ответом и шесть заданий (задания 16–21) с развёрнутым ответом.

По уровню сложности задания распределяются следующим образом: задания 1—11 имеют базовый уровень, задания 12—19 — повышенный уровень, задания 20 и 21 относятся к высокому уровню сложности.

Задания первой части предназначены для определения математических компетентностей выпускников образовательных организаций, реализующих программы среднего (полного) общего образования на базовом уровне.

Задание с кратким ответом (1-15) считается выполненным, если в бланке ответов N = 1 зафиксирован верный ответ в виде целого числа или конечной десятичной дроби.

Задания 16–21 с развёрнутым ответом, в числе которых четыре задания повышенного и два задания высокого уровней сложности, предназначены для более точной дифференциации абитуриентов вузов.

Правильное решение каждого из заданий 1-15 оценивается одним баллом.

Правильное решение каждого из заданий 16 - 17 оценивается- 2 баллами; 18 и 19 — 3 баллами; 20 и 21 —4 баллами. Максимальный первичный балл за выполнение всей работы — 33 балла.

К каждому заданию с развёрнутым ответом, включённому в демонстрационный вариант, предлагается одно из возможных решений. Приведённые критерии оценивания позволяют составить представление о требованиях к полноте и правильности решений

Демонстрационный вариант контрольных измерительных материалов, система оценивания, спецификация и кодификаторы помогут выработать стратегию подготовки к ЕГЭ по математике

Инструкция по выполнению работы

Экзаменационная работа состоит из двух частей, включающих в себя 21 задание.

Часть 1 содержит 11 заданий базового уровня сложности с кратким ответом.

Часть 2 содержит 4 задания повышенного уровня сложности с кратким ответом и 6 заданий повышенного и высокого уровня сложности с развёрнутым ответом.

На выполнение экзаменационной работы по математике отводится 3 часа 55 минут (235 минут).

Ответы к заданиям 1–15 записываются в виде целого числа или конечной десятичной дроби.

Числа запишите в поля ответов в тексте работы, а затем перенесите в бланк ответов № 1.

Otbet: <u>-0,8</u>. 10 - 0 , 8

При выполнении заданий 16–21 требуется записать полное решение и ответ в бланке ответов № 2.

Все бланки ЕГЭ заполняются яркими чёрными чернилами. Допускается использование гелевой, капиллярной или перьевой ручек.

При выполнении заданий можно пользоваться черновиком. Записи в черновике не учитываются при оценивании работы.

Баллы, полученные Вами за выполненные задания, суммируются. Постарайтесь выполнить как можно больше заданий и набрать наибольшее количество баллов.

Желаем успеха!

Ответом к заданиям 1–11 является целое число или конечная десятичная дробь. Ответ следует записать в *БЛАНК ОТВЕТОВ* № 1 справа от номера выполняемого задания, начиная с первой клеточки. Каждую цифру, знак минус и запятую пишите в отдельной клеточке в соответствии с приведёнными в бланке образцами. Единицы измерений писать не нужно.

1.Простейшие задачи

Летом килограмм клубники стоит 75 рублей. Маша купила 2кг 200г клубники. Сколько рублей сдачи она должна получить с 200 рублей? *Решение*.

75.2,2=165(рублей) стоит клубника.

200-165=35(рублей) получит сдачи.

Ответ: 35.

2. Задачи на проценты

В школе 800 учеников, из них 30% — ученики начальной школы. Среди учеников средней и старшей школы 20% изучают немецкий язык. Сколько учеников в школе изучают немецкий язык, если в начальной школе немецкий язык не изучается?

Решение.

Учеников начальной школы $800 \cdot 0.3 = 240$, а учеников средней и старшей школы — 800 - 240 = 560. Значит, немецкий язык в школе изучают

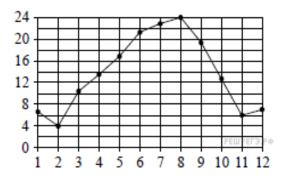
 $560 \cdot 0,2 = 112$ учеников.

Ответ: 112.

3. Чтение графиков и диаграмм

На рисунке точками показана средняя температура воздуха в Сочи за каждый месяц 1920 года. По горизонтали указываются месяцы, по вертикали — температура в градусах Цельсия. Для наглядности точки соединены линией.

Сколько месяцев средняя температура была больше 18 градусов Цельсия?



Решение.

Из графика видно, что среднемесячная температура была выше 18 градусов Цельсия в течение четырёх месяцев с июня по сентябрь. Ответ: 4.

4. Работа с формулами.

Второй закон Ньютона можно записать в виде F=ma, где F —сила (в ньютонах), действующая на тело, m —его масса (в килограммах), a — ускорение, с которым движется тело (в m/c^2). Найдите m, если F=84, a=12.

Решение.

$$m = F: a$$
 $m = 84:12 = 7$

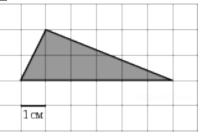
Ответ:7.

5.Квадратная решётка, координатная плоскость.

На клетчатой бумаге с размером клетки $1 \text{ см} \times 1 \text{ см}$ изображён треугольник. Найдите его площадь. Ответ дайте в см 2 .

Решение.

Площадь треугольника равна половине произведения основания на высоту, проведенную к



этому основанию. Поэтому
$$S = \frac{1}{2} \cdot 2 \cdot 6 = 6$$
 см².

Ответ: 6.

6. Начала теории вероятностей

В сборнике билетов по биологии всего 25 билетов. Только в двух билетах встречается вопрос о грибах. На экзамене школьнику достаётся один случайно выбранный билет из этого сборника. Найдите вероятность того, что в этом билете будет вопрос о грибах.

Решение.

Из 25 билетов 2 содержат вопроса о грибах, поэтому вероятность того, что в случайно выбранном на экзамене билете школьнику достанется вопроса о

грибах, равна
$$\frac{2}{25} = 0.08$$

Ответ: 0,08.

7.Простейшие уравнения

Найдите корень уравнения **3^{x-5} = 81.**

Решение.

Перейдем к одному основанию степени:

$$3^{x-5} = 81 \Leftrightarrow 3^{x-5} = 3^4 \Leftrightarrow x-5 = 4 \Leftrightarrow x = 9.$$

Ответ: 9.

8. Планиметрия: задачи, связанные с углами.

Треугольник ABC вписан в окружность с центром O. Угол BAC равен 32°. Найдите угол BOC. Ответ дайте в градусах.

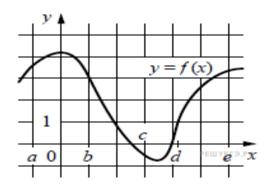
Решение.

Вписанный угол равен половине дуги, на которую он опирается, а центральный угол равен дуге, на которую он опирается. Поэтому центральный угол BOC вдвое больше вписанного угла BAC (см. рис.). Таким образом, он равен 64° . Ответ: 64.



9. Анализ графиков и диаграмм.

На рисунке изображён график функции y = f(x). Числа a, b, c, d и e задают на оси x четыре интервала. Пользуясь графиком, поставьте в соответствие каждому интервалу характеристику функции или её производной.



Ниже указаны значения производной в данных точках. Пользуясь графиком, поставьте в соответствие каждой точке значение производной в ней.

ТОЧКИ

ЗНАЧЕНИЯ ПРОИЗВОДНОЙ

$\mathbf{A}\mathbf{)}(a;b)$	1) производная отрицательна на всём интерва-
\mathbf{b}) $(b;c)$	ле
\mathbf{B}) $(c;d)$	2) производная положительна в начале интер-
Γ) $(d; e)$	вала и отрицательна в конце интервала
	3) функция отрицательна в начале интервала и
	положительна в конце интервала

4) производная положительна на всём интервале

Запишите в ответ цифры, расположив их в порядке, соответствующем буквам:

Α	Б	В	٢

Пояснение.

Если функция возрастает, то производная положительна и наоборот.

На интервале (a;b) производная положительна вначале интервала и отрицательна в конце, потому что функция вначале возрастает, а потом убывает.

На интервале (b;c) производная отрицательна, потому что функция убывает.

На интервале (c;d) функция отрицательна в начале интервала и положительна в конце интервала.

На интервале (d;e) производная положительна, потому что функция возрастает.

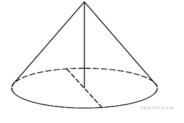
Таким образом, получаем соответствие A — 2, Б — 1, В — 3 и Γ — 4. *Ответ*: 2134.

10.Стереометрия.

Высота конуса равна 5, а диаметр основания – 24. Найдите образующую конуса.

Решение.

Радиус конуса R=12. Используя теорему Пифагора, найдем длину образующей:



$$L = \sqrt{25 + 144} = 13$$

Ответ: 13.

11.Выбор оптимального варианта

Для группы иностранных гостей требуется купить 30 путеводителей. Нужные путеводители нашлись в трёх интернет-магазинах. Цена путеводителя и условия доставки всей покупки приведены в таблице.

Интернет- магазин	Цена одного путеводителя (руб.)	Стоимость доставки (руб.)	Дополнительные условия
A	255	350	нет
Б	270	300	Доставка бесплатно, если сумма заказа превышает 8000 p.
В	245	450	Доставка бесплатно, если сумма заказа превышает 7500 р.

Во сколько рублей обойдётся наиболее дешёвый вариант покупки с доставкой?

Рассмотрим все варианты.

При покупке в магазине A цена тридцати путеводителей составит 7650 руб., с доставкой — 8000 руб.

При покупке в магазине Б цена тридцати путеводителей составит 8100 руб., доставка будет бесплатной.

При покупке в магазине В цена тридцати путеводителей составит 7350 руб., с доставкой — 7800 руб.

Следовательно, наименьшая стоимость покупки с учётом доставки составляет 7800 руб.

Ответ: 7800.

Не забудьте перенести все ответы в бланк ответов № 1

Ответом на задания 12-15 должно быть целое число или конечная десятичная дробь. Ответ следует записать в бланк ответов № 1 справа от номера выполняемого задания, начиная с первой Каждую цифру, минус запятую знак И пишите клеточке в соответствии с приведёнными в бланке образцами. Единицы измерений писать не нужно.

12. Вычисления и преобразования

Найдите $\sin 2\alpha$ если $\cos \alpha = 0$. 6, $\pi < \alpha < 2\pi$

Заметим, что угол α лежит в четвёртой четверти, его синус отрицателен:

$$\sin \alpha = -\sqrt{1 - \cos^2 \alpha} = -\sqrt{1 - 0.36} = -0.8.$$

Далее используем формулу синуса двойного угла:

$$\sin 2\alpha = 2\sin \alpha \cos \alpha = 2 \cdot (-0.8) \cdot 0.6 = -0.96.$$

Ответ: -0,96.

13.Стереометрия.

В первом цилиндрическом сосуде уровень жидкости достигает 16 см. Эту жидкость перелили во второй цилиндрический сосуд, диаметр основания которого в 2 раза больше диаметра основания первого. На какой высоте будет находиться уровень жидкости во втором сосуде? Ответ выразите в см.

Решение.

Объем цилиндрического сосуда выражается через его диаметр и высоту как $V = \frac{\pi d^2 h}{\hbar}$. При увеличении диаметра сосуда в 2 раза высота равного объема жидкости $H = \frac{4V}{\pi d^2}$ уменьшится в 4 раза и станет равна 4.

Ответ: 4.

14.Наибольшее и наименьшее значение функции.

Найдите наибольшее значение функции $y = 5 + 9x - \frac{x^3}{3}$ на отрезке [-3;3]

Найдем производную заданной функции: $y' = 9 - x^2 = (3 - x)(3 + x)$.

$$y' = 9 - x^2 = (3 - x)(3 + x)$$

Найдем нули производной: $x^2 - 9 = 0 \Leftrightarrow \begin{bmatrix} x = 3, \\ x = -3. \end{bmatrix}$

Определим знаки производной функции и изобразим на рисунке поведение функции:

$$\frac{y'-}{y}$$
 -3 3 $\frac{x}{x}$

Найденная производная неотрицательна на заданном отрезке, заданная функция возрастает на нем, поэтому наибольшим значением функции на отрезке является:

$$y(3) = 5 + 27 - 9 = 23.$$

Ответ: 23.

15.Текстовые задачи.

Моторная лодка прошла против течения реки 112 км и вернулась в пункт отправления, затратив на обратный путь на 6 часов меньше. Найдите скорость течения, если скорость лодки в неподвижной воде равна 11 км/ч. Ответ дайте в км/ч.

Решение.

Пусть u км/ч — скорость течения реки, тогда скорость лодки по течению равна 11+u км/ч, а скорость лодки против течения равна 11-u км/ч. На обратный путь лодка затратила на 6 часов меньше, отсюда имеем:

$$\frac{112}{11 - u} - \frac{112}{11 + u} = 6 \Leftrightarrow \frac{224u}{(11 - u)(11 + u)} = 6 \Leftrightarrow \frac{112u}{121 - u^2} = 3 \Leftrightarrow 0 \Leftrightarrow 112u = 3(121 - u^2) \Leftrightarrow 3u^2 + 112u - 363 = 0 \Leftrightarrow 0 \Leftrightarrow v = \frac{-56 + \sqrt{56^2 + 3 \cdot 363}}{3}; \Leftrightarrow v = \frac{-56 - \sqrt{56^2 + 3 \cdot 363}}{3} \Leftrightarrow v = \frac{-121}{3} \Leftrightarrow v = 3.$$

Таким образом, скорость течения реки равна 3 км/ч.

Ответ: 3.

Не забудьте перенести все ответы в бланк ответов № 1

Для записи решений и ответов на задания 16-21 используйте БЛАНК ОТВЕТОВ №2. Запишите сначала номер выполняемого задания (16,17 и т.д.), а затем полное обоснованное решение и ответ. Ответы записывайте чётко и разборчиво.

16. Уравнения, системы уравнений

- a) Решите уравнение $\cos 2x = 1 \cos \left(\frac{\pi}{2} x\right)$
- б) Найдите все корни этого уравнения, принадлежащие промежутку $\left[-\frac{5\pi}{2}; -\pi\right)$

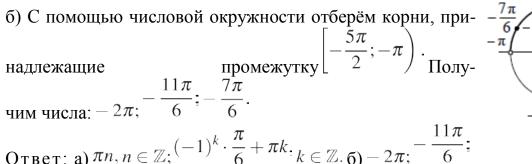
Решение.

а) Преобразуем обе части уравнения:

$$1 - 2\sin^2 x = 1 - \sin x \Leftrightarrow 2\sin^2 x - \sin x = 0 \Leftrightarrow \sin x (2\sin x - 1) = 0.$$

откуда
$$\sin x = 0$$
 или $\sin x = \frac{1}{2}$.

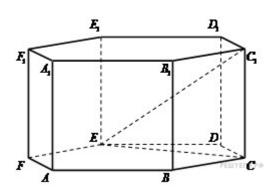
Из уравнения
$$\sin x = 0$$
 находим: $x = \pi n$, где $n \in \mathbb{Z}$.Из уравнения $\sin x = \frac{1}{2}$ находим: $x = (-1)^k \cdot \frac{\pi}{6} + \pi k$, где $k \in \mathbb{Z}$.



Other: a)
$$\pi n, n \in \mathbb{Z}$$
; $(-1)^k \cdot \frac{\pi}{6} + \pi k, k \in \mathbb{Z}.$ 6) -2π ; $-\frac{11\pi}{6}$; $-\frac{7\pi}{6}$.

17. Углы и расстояния в пространстве

В правильной шестиугольной призме $ABCDEFA_1B_1C_1D_1E_1F_1$ все рёбра которой равны 10, найдите расстояние от точки Eдо прямой B_1C_1 .



Решение.

Так как *ABCDEF* — правильный шестиугольник, прямые BCи CEперпендикулярны. Поскольку прямые $BC_{\rm M}$ B_1C_1 параллельны, CEперпендикулярно B_1C_1 .Тогда по теореме о трёх перпендикулярах EC_1 перпендикулярна B_1C_1 , поэтому длина отрезка EC_1 равна искомому расстоянию.

 11π

По условию $CC_1 = 10$, диагональ правильного шестиугольника $CE = 10\sqrt{3}$. Тогда по теореме Пифагора для треугольника ECC_1 находим, что $EC_1 = 20$.

Ответ: 20.

18.Неравенства.

Решите систему неравенств

$$\begin{cases} 2^x + \frac{80}{2^x} \ge 21, \\ \log_{x-1} \left(\frac{x+1}{5}\right) \le 0. \end{cases}$$

Решение.

Заметим, что $2^x > 0$ при всех значениях переменной, поэтому первое неравенство можно умножить на 2^x , не меняя его знака, откуда имеем:

$$4^{x} + 80 \ge 21 \cdot 2^{x} \Leftrightarrow 4^{x} - 21 \cdot 2^{x} + 80 \ge 0 \Leftrightarrow \begin{bmatrix} 2^{x} \ge 16, \\ 2^{x} \le 5 \end{bmatrix} \Leftrightarrow \begin{bmatrix} x \ge 4, \\ x \le \log_{2} 5. \end{bmatrix}$$

Решим второе неравенство системы, используя теорему о знаке логарифма:

$$\log_{x-1}\left(\frac{x+1}{5}\right) \le 0 \Leftrightarrow \begin{cases} 1 < x \ne 2, \\ (x-2)\left(\frac{x+1}{5}-1\right) \le 0 \end{cases} \Leftrightarrow \begin{cases} 1 < x \ne 2, \\ (x-2) \cdot \frac{x-4}{5} \le 0 \end{cases} \Leftrightarrow 2 < x \le 4.$$

Поскольку $2 < \log_2 5 < 3$,получаем решение исходной системы неравенств: $2 < x \le \log_2 5, x = 4.$

Otbet: $(2, \log_2 5] \cup \{4\}$.

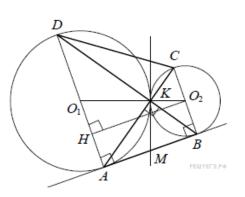
19.Планиметрические задачи

Две окружности касаются внешним образом в точке К. Прямая AB касается первой окружности в точке A, а второй — в точке B. Прямая BK пересекает первую окружность в точке D, прямая AKпересекает вторую окружность в точке C.

- а) Докажите, что прямые AD и BC параллельны.
- б) Найдите площадь треугольника АКВ, если известно, что радиусы окружностей равны 4 и 1.

Решение.

а) Обозначим центры окружностей O_1 и O_2 соответственно. Пусть общая касательная, проведённая к окружностям в точке K, пересекает AB в точке M. По свойству касательных, проведённых из одной точки, AM = KM иKM = BM. Треугольник AKB, у которого медиана равна половине стороны, к которой она проведена, прямоугольный. Вписанный угол АКО прямой, поэтому он опирается на диаметр AD. Зна-



чит, $AD \perp AB$. Аналогично, получаем, что $BC \perp AB$. Следовательно, прямые AD и BC параллельны.

б) Пусть, для определённости, первая окружность имеет радиус 4, а вторая — радиус 1.

Треугольники *BKC* и *AKD* подобны, $\frac{AD}{BC}=4$. Пусть $S_{BKC}=S$,

тогда $S_{AKD} = 16S$. У треугольников AKD и AKB общая высота, следовательно, $\frac{S_{AKD}}{S_{AKB}} = \frac{DK}{KB} = \frac{AD}{BC}$: то есть $S_{AKB} = 4$ S. Аналогично, $S_{CKD} = 4$ S. Площадь

трапеции ABCD равна 25S.

Вычислим площадь трапеции ABCD. Проведём к AD перпендикуляр O_2H , равный высоте трапеции, и найдём его из прямоугольного треугольника O_2HO_1 :

$$O_2H = \sqrt{O_1O_2^2 - O_1H^2} = 4$$
. Тогда $S_{ABCD} = rac{AD + BC}{2} \cdot AB = 20.$

Следовательно, 25S = 20, откуда S = 0.8 и $S_{AKB} = 4S = 3.2$.

Ответ: 3,2.

20. Уравнения, неравенства и их системы с параметрами

Найдите все положительные значения a, при каждом из которых система

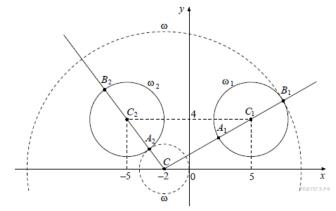
$$\begin{cases} (|x|-5)^2 + (y-4)^2 = 9\\ (x+2)^2 + y^2 = a^2 \end{cases}$$

имеет единственное решение.

Решение.

Если $x \ge 0$, то уравнение $(|x| - 5)^2 + (y - 4)^2 = 9$ задаёт окружность ω_1 с центром в точке C_1 (5; 4) радиусом 3, а если x < 0, то оно задаёт окружность ω_2 с центром в точке C_2 (-5; 4) таким же радиусом (см. рисунок).

При положительных значениях а уравнение $(x + 2)^2 + y^2 = a^2$ задаёт



окружность ω с центром в точке C (-2; 0) радиусом a. Поэтому задача состоит в том, чтобы найти все значения a, при каждом из которых окружность ω имеет единственную общую точку с объединением окружностей ω_1 и ω_2 .

Из точки C проведём луч CC_1 и обозначим через A_1 и B_1 точки его пересечения с окружностью ω_1 , где A_1 лежит между C и C_1 . Так как

$$CC_1 = \sqrt{(5+2)^2 + 4^2} = \sqrt{65}$$
.

$$CA_1 = \sqrt{65} - 3$$
, $CB_1 = \sqrt{65} + 3$.

При $a < CA_1$ или $a > CB_1$ окружности ω и ω_1 не пересекаются.

При $CA_1 < a < CB_1$ окружности ω и ω_1 имеют две общие точки.

При $a = CA_1$ или $a = CB_1$ окружности ω и ω_1 касаются.

Из точки C проведём луч CC_2 и обозначим через A_2 и B_2 точки его пересечения с окружностью ω_2 , где A_2 лежит между C и C_2 . Так как

$$CC_2 = \sqrt{(-5+2)^2 + 4^2} = 5$$

TO
$$CA_2 = 5 - 3 = 2$$
, $CB_2 = 5 + 3 = 8$.

При $a < CA_2$ или $a > CB_2$ окружности ω и ω_2 не пересекаются.

При $CA_2 < a < CB_2$ окружности ω и ω_2 имеют две общие точки.

При $a = CA_2$ или $a = CB_2$ окружности ω и ω_2 касаются.

Исходная система имеет единственное решение тогда и только тогда, когда окружность ω касается ровно одной из двух окружностей ω_1 и ω_2 и не пересекается с другой. Так как $CA_2 < CA_1 < CB_2 < CB_1$, то условию задачи удовлетворяют только числа $a=2,\ a=\sqrt{65}+3$.

OTBET: 2;
$$\sqrt{65} + 3$$

21. Числа и их свойства.

Задумано несколько (не обязательно различных) натуральных чисел. Эти числа и все их возможные суммы (по 2, по 3 и т.д.) выписывают на доске в порядке неубывания. Если какое-то число *n*, выписанное на доске, повторяется несколько раз, то на доске оставляется одно такое число *n*, а остальные числа, равные *n*, стираются. Например, если задуманы числа 1, 3, 3, 4, то на доске будет записан набор 1, 3, 4, 5, 6, 7, 8, 10, 11.

- а) Приведите пример задуманных чисел, для которых на доске будет записан набор 3, 6, 9, 12, 15.
- б) Существует ли пример таких задуманных чисел, для которых на доске будет записан набор 1, 3, 4, 5, 6, 8, 9, 11, 12, 13, 14, 17, 18, 19, 21, 23?
- в) Приведите все примеры задуманных чисел, для которых на доске будет записан набор 8, 9, 10, 17, 18, 19, 20, 27, 28, 29, 30, 37, 38, 39, 47.

Решение.

- а) Задуманные числа 3, 3, 3, 3 дают требуемый набор, записанный на доске.
- б) Поскольку задуманные числа натуральные, наименьшее число в наборе это наименьшее из задуманных чисел, а наибольшее число в наборе это сумма всех задуманных чисел. Среди чисел записанного набора должна быть сумма всех чисел, кроме наименьшего, то есть 23 1 = 22. Но этого числа нет в наборе, поэтому не существует примера таких задуманных чисел, для которого на доске будет выписан набор из условия.
- в) Число 8 наименьшее число в наборе является наименьшим из задуманных чисел, а наибольшее число в наборе это сумма всех задуманных чисел. Поэтому количество задуманных чисел не превосходит целой части